Experimental data: s-values & helical propensities

Table 2. Helix propensity values measured at 273 K

Residue	s-Value ^a	w-Value ^a	-RT ln(w) (kcal/mol)	$\Delta\Delta G^0$ (kcal/mol)	
Ala	1.54	1.61	-0.258	-1.88	•
Arg+	1.1 ^f	1.2 ^f	-0.047	-1.67	
Leu	0.92	0.96	0.022	-1.60	
Lys+	0.78	0.82	0.108	-1.52	
Glu°	0.63 ^b	0.66 ^b	0.225	-1.40	
Met	0.60	0.63	0.251	-1.37	
Gln	0.53	0.56	0.314	-1.31	
Glu-	0.43 ^b	0.45 ^b	0.433	-1.20	
Ile	0.42	0.44	0.445	-1.18	
Tyr	0.37-0.50°	0.39-0.53°	0.344°-0.511	-1.28° to	-1.11
His ⁰	0.36 ^d	0.38d	0.525	-1.10	
Ser	0.36	0.38	0.525	-1.10	
Cys	0.33	0.35	0.570	-1.06	
Asn	0.29	0.31	0.635	-1.00	
Asp-	0.29e	0.31e	0.635	-1.00	
Asp ⁰	0.29e	0.31e	0.635	-1.00	
Trp	$0.29^{\circ}-0.36$	0.30°-0.38	0.525-0.653°	-1.10 to	-0.97°
Phe	0.28	0.29	0.672	-0.95	
Val	0.22	0.23	0.797	-0.83	
Thr	0.13	0.14	1.07	-0.56	
His+	0.06 ^d	0.06 ^d	1.53	-0.10	
Gly	0.05	0.05	1.62	0	-
Pro	≈0.001	≈0.001	≈4	>5	4-

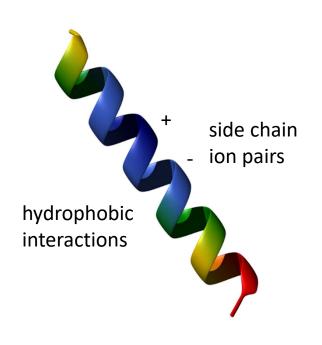
Chakrabartty, Kortemme, Baldwin, Protein Sci 1994

Measured from fit of theory to host-guest measurements

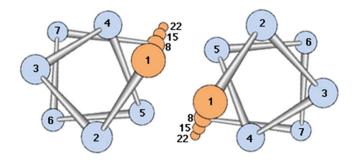
allows now the **prediction** of the helicity of a given amino acid sequence

^a Values obtained by applying Lifson-Roig theory modified to include either N-capping or charged group-helix macrodipole interactions. Conditions: 273 K, 1.0 M NaCl for uncharged residues and Lys, and 273 K, 10 mM NaCl for Arg, Asp, Glu, and His.

b Values from Scholtz et al. (1993).

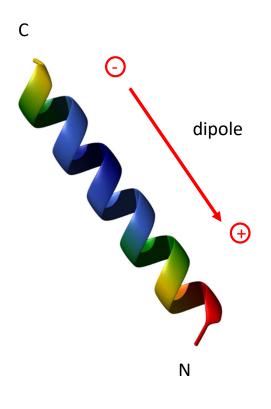

^c Values corrected for error in fraction helix measurement caused by aromatic contribution.

^d Values from Armstrong and Baldwin (1993).


^e Values from Huyghues-Despointes et al. (1993).

Values from Huyghues-Despointes and Baldwin (unpubl.).

Side chain interactions: Stabilizing and destabilizing


The helical wheel:

Mapping side chains on the same face of the helix

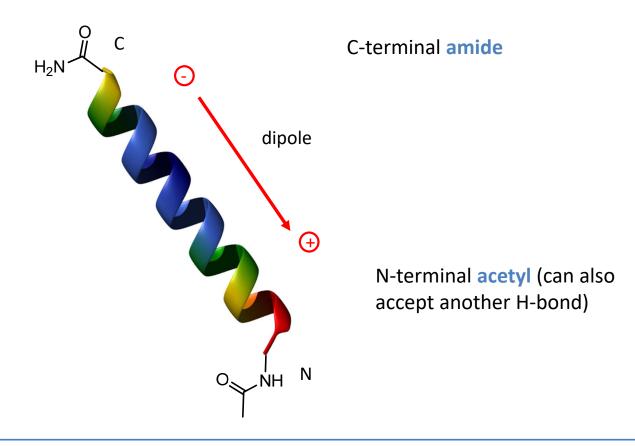
interactions possible stabilizing or destabilizing

Interactions with the helix-dipole

Negative charges at the

C-terminus

or

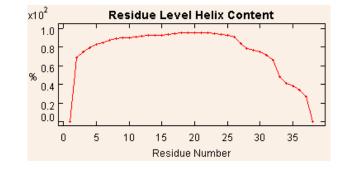

positive charges at the

N-terminus

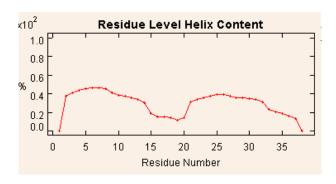
destabilize helices

Capping groups can overcome this effect

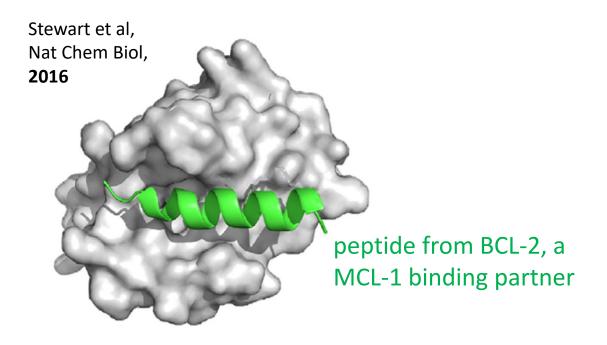
Capping groups in isolated helices


Helix prediction: AGADIR

Secondary structure prediction based on helix-coil theory


takes into account further empirical parameters

Muñoz, V. & Serrano, L. (1994a), Nature: Struct. Biol. 1, 399-409

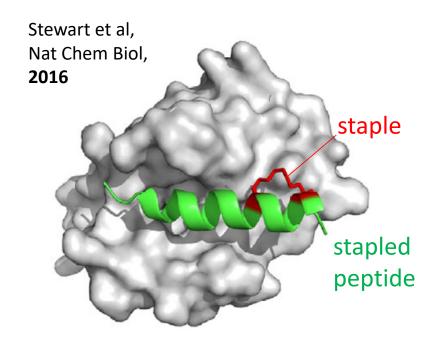

Peptide 1AAAAAAAQQAAAAQWAAA
AAAAAAAQQAAAAQWAAA

Peptide 1AAAAAAAQQAAAAQWAGG
AAAAAAAQQAAAAQWAAA

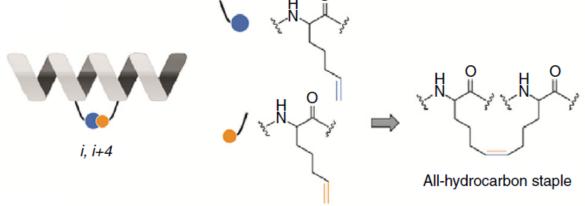
How to stabilize helix enough to make an efficient drug?

MCL-1: resistance factor in human cancer → prevents apoptosis of cancer cells

Targeting protein-protein interactions:


- very difficult with small molecules
- peptides are a possible solution

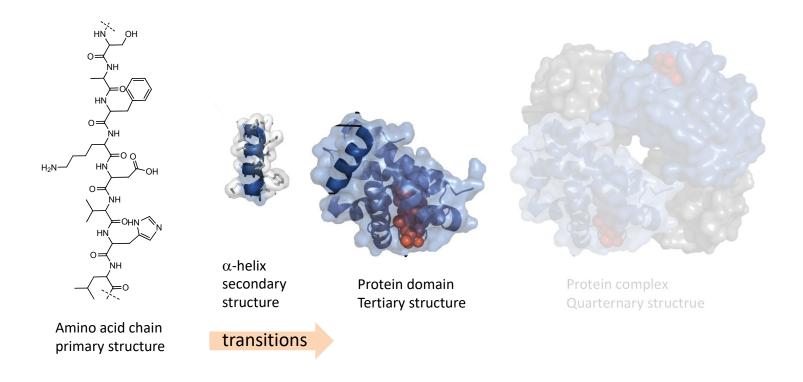
→ Problems:


structural stability, cell permeability, stability to proteases

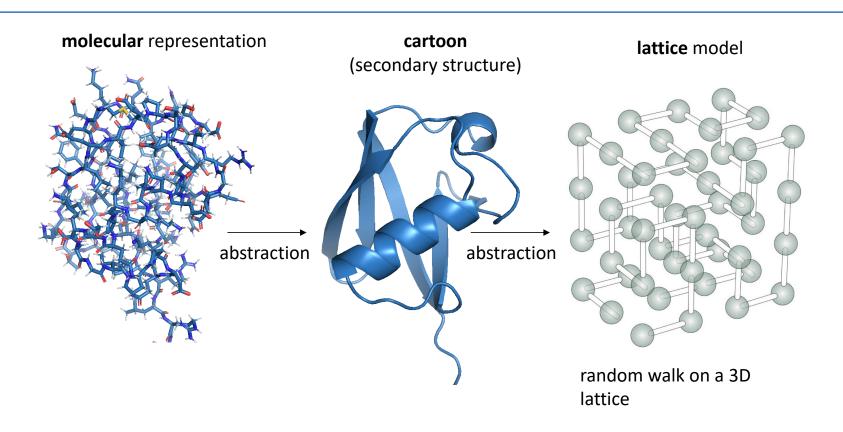
→ Solution: peptides with stabilized structure (a-helix)

Approach: 'Stapling' the peptides

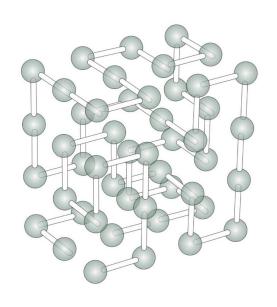
MCL-1: resistance factor in human cancer → prevents apoptosis of cancer cells


Araghi & Keating, Curr Opin Struct Biol 2016

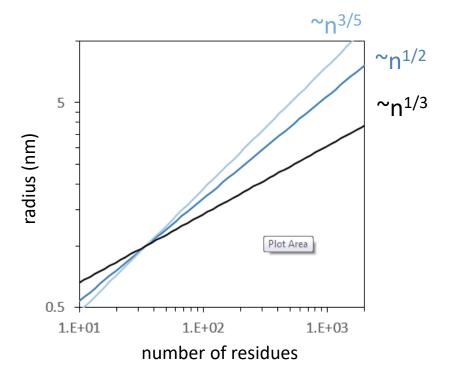
- synthesis via ring-closure metathesis
- strong increase in helicity → why?
- better cell permeability and serum stability
- → drug like properties possible


Summary

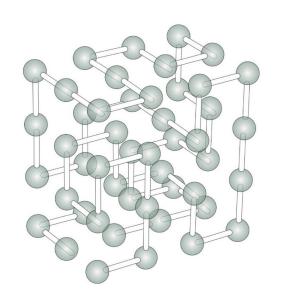
- Using simple assumptions and statistical thermodynamics the cooperative conformational change from coil to helix can be analyzed
- The cooperativity of the transition depends on the nucleation parameter σ
- Experiments produced values of the elongation parameter s for all amino acid residues, these serve as a predictor of helix stability
- Charges at helix termini stabilize the helix if they favorably interact with the helix dipole, otherwise the weaken the helix
- Capping motifs stabilize helices through hydrogen bonding with termini, optimal charges, conformations


Proteins – Structural hierarchy

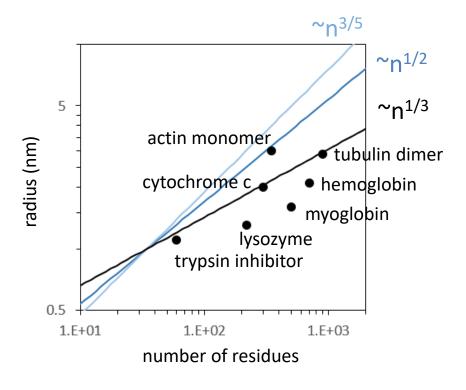
Protein organization in 3D



Scaling laws for protein size


Scaling laws for a random walk self-avoiding chain: $r \sim n^{3/5}$ random chain: $r \sim n^{1/2}$

compact chain: $r \sim n^{1/3}$

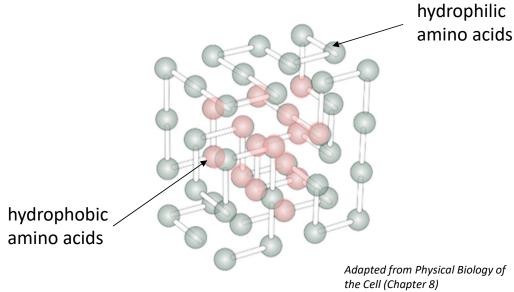

Adapted from Physical Biology of the Cell (Chapter 8)

Scaling laws for protein size

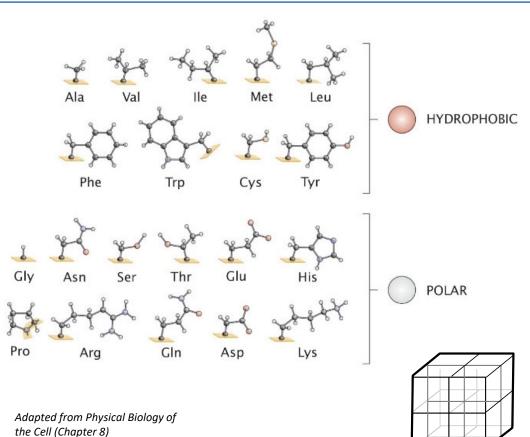
Scaling laws for a random walk self-avoiding chain: $r \sim n^{3/5}$

random chain: $r \sim n^{1/2}$ compact chain: $r \sim n^{1/3}$

Adapted from Physical Biology of the Cell (Chapter 8)


How does a protein find its native state?

Random search:


Even on a lattice (6 degrees of freedom) 100 aa protein has $6^{100} = 6.5 \times 10^{77}$ conformations, random search would take astronomical amount of time

Mechanism:

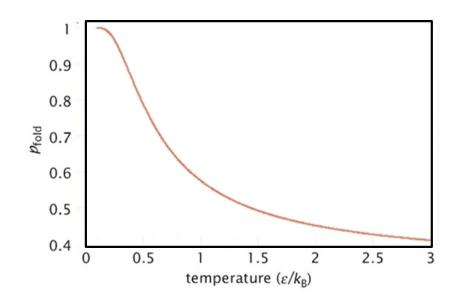
Hydrophobic collapse

HP-models of protein folding

categorization of amino acids as hydrophobic (H) or polar (P)

→ <u>2 letter alphabet</u> allows an abstract model of structure formation

Of note: finer categorization possible -> charged, acidic, basic, helix forming, etc.

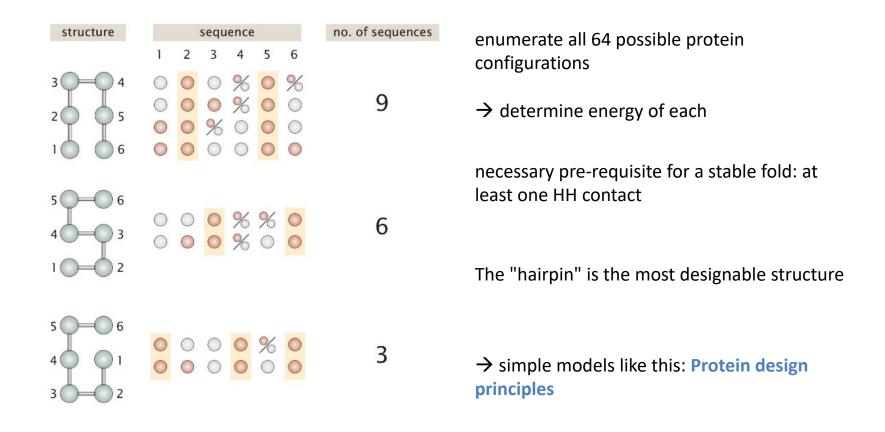

Quiz: How many HP sequences possible on a 3x3x3 lattice?

How many different HP protein configurations are possible?

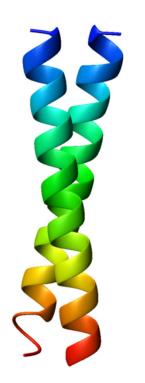
Note: there possible 103'346 compact structures.

6x2 lattice model p. 14

Temperature dependence of folding


$$p_{fold} = \frac{e^{-2\beta\varepsilon}}{e^{-2\beta\varepsilon} + 2e^{-4\beta\varepsilon}} = \frac{e^{-2\beta\varepsilon}}{Q}$$

sigmoidal transition

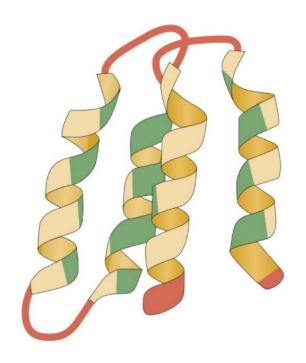

reminiscent of real protein denaturation

Adapted from Physical Biology of the Cell (Chapter 8)

Identification of protein-like (foldable) structures

Real structures: Simple tertiary structure motifs

Secondary structure elements form the **elementary motifs** of protein structure.


Quiz:

The sequence of GCN4 is given as follows: RMKQLEDKVEELLSKNYHLENEVARLKKLVGER

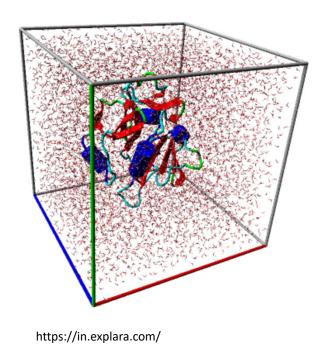
how can it be immediately recognized that this folds into a coiled coil?

GCN4 coiled coil domain PDB: 1zik

Helix bundles: Inherently designable structures

Hecht et al. Protein Sci 2004

Secondary structure

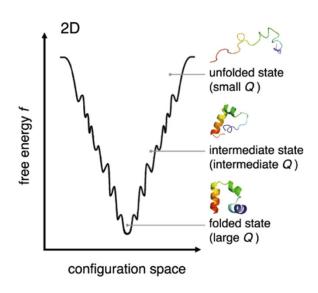

→ fixed, helical

Tertiary structure:

follows HP rules

Provides a platform, on which further functionality can be designed

Force field for protein structure

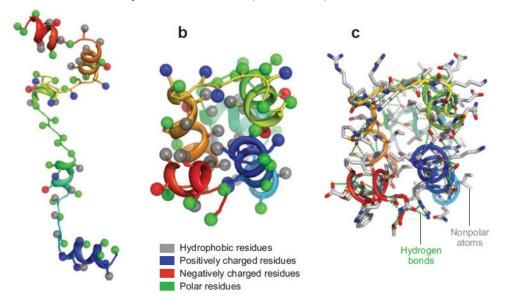

Force field for protein structure evaluation:

$$V = \sum_{bonds} a_{\alpha} (x_i - x_{i0})^2$$

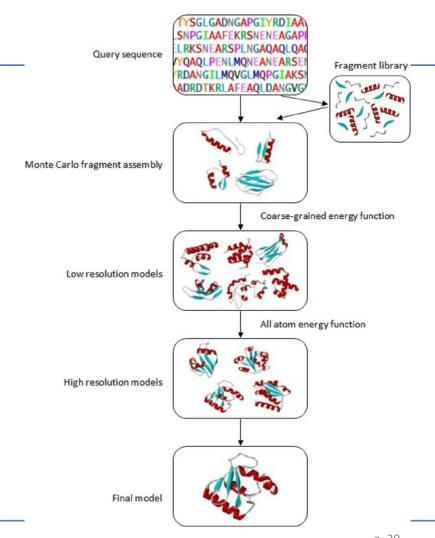
$$+ \sum_{bond \text{ angles}} b\beta (\theta_i - \theta_{i0})^2$$

$$+ \sum_{charges} \frac{Z_i Z_j e^2}{D(r) r_{ij}}$$

$$+ \sum_{neutral \text{ atoms}} 4d_{\delta} \left[\left(\frac{Ai_j}{ri_j} \right) 12 - \left(\frac{B_{ij}}{r_{ij}} \right) \right]$$

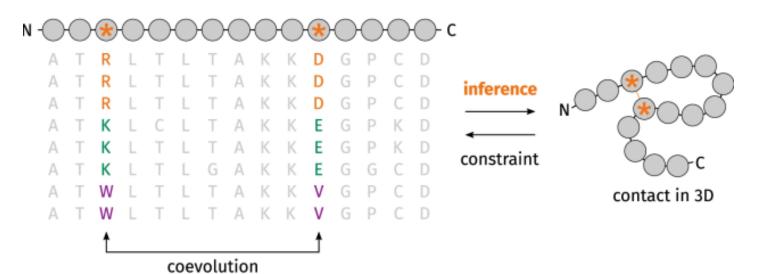


https://www.nature.com/articles/s41598-019-50825-6

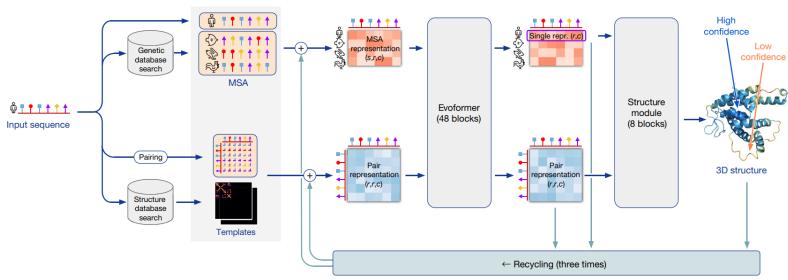

Goal: Minimize the configurational energy, find the global minimum

Protein structure prediction / design

Design from fragment libraries, followed by refinement (Rosetta)



Das & Baker, Annu Rev Biochem 2008


2-Protein conformations p. 20

Structural information from sequence: Co-evolution analysis

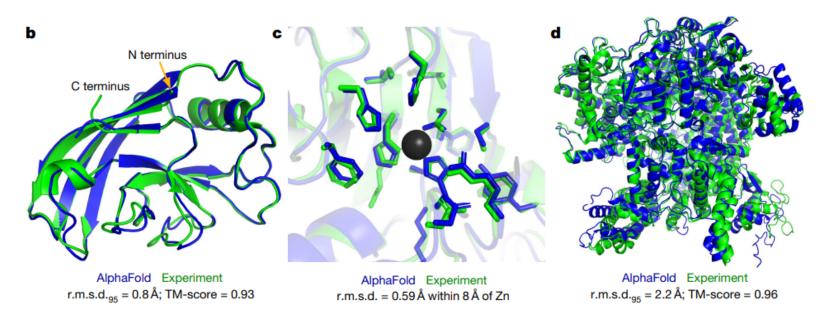
43146:42mxuqddsrqh1335;:99

Protein structure prediction – ML approaches

Input:

- primary sequence of target protein
- multiple sequence alignments of homologues
- structural information of homologues (PDB)

Process 1:

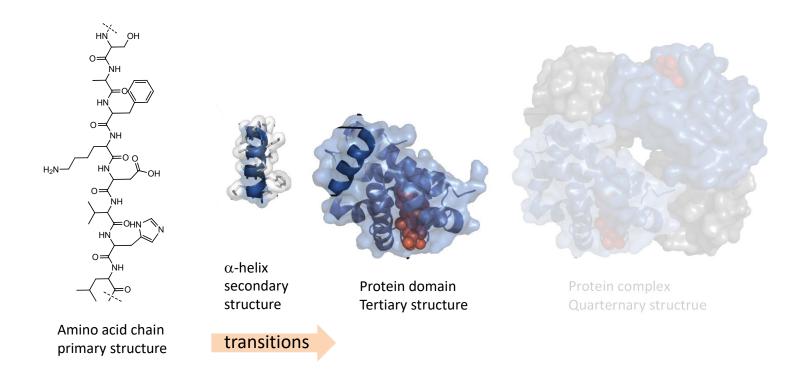

- MSA representation
- Residue pair representation

Process 2:

- 3D structure representation: rotation & translation of each residue
- refinement

AlphaFold2 - Nature 2021

Protein structure prediction – ML approaches

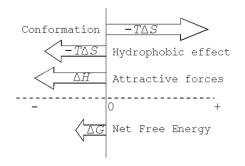


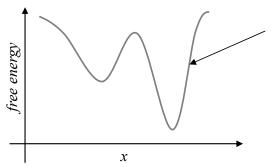
Result:

- highly accurate structure prediction
- low backbone RMSD
- correct residue orientation

AlphaFold - Nature 2021

Protein structure – A thermodynamic view

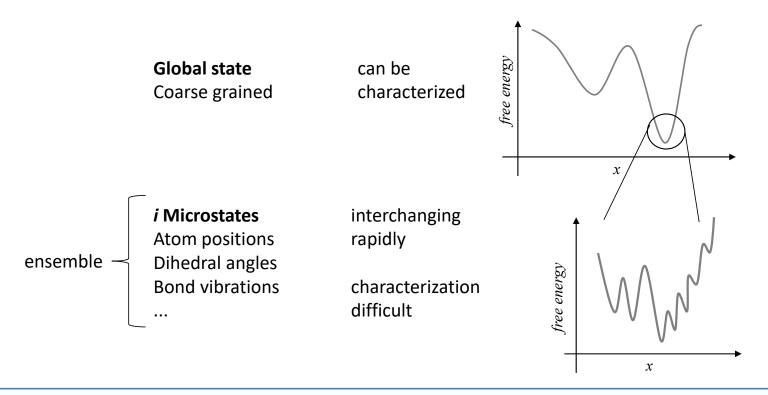



1-Protein structure and stability

A free energy surface to understand protein structure

using a basic chemistry principles, the free energy surface, to describe state transitions in proteins

Free energy:

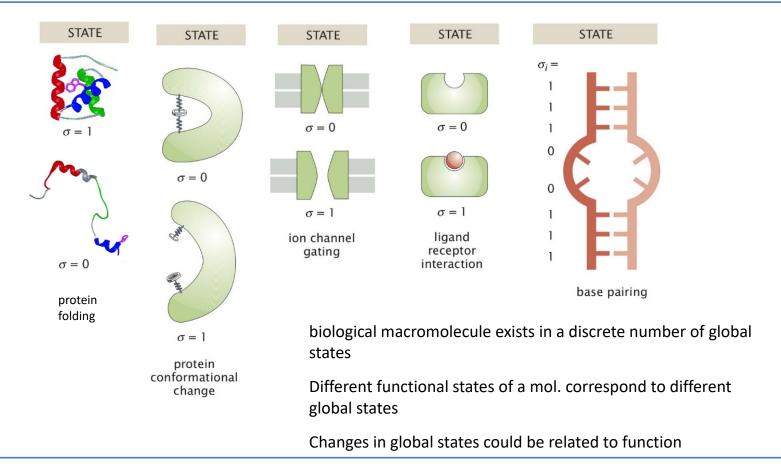

each (populated) protein conformation falls somewhere on this line

some reaction coordinate:

solvent accessibility compactness % hydrogen bonds saturated

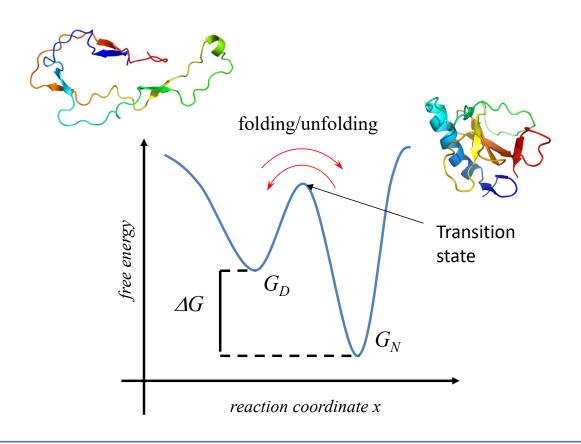
Global states in proteins

For a biophysical understanding \rightarrow simplifications are required.

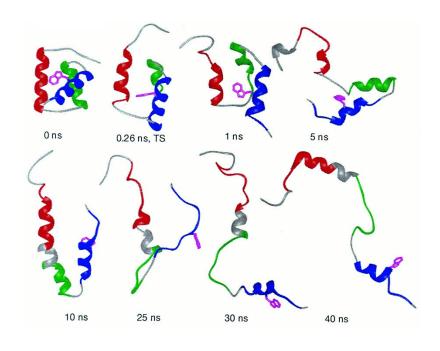

Global states in proteins

Biology: Global states are useful concept

- We can assume that any biological macromolecule exists in a discrete number of global states, dependent e.g. on the environment
- Different functional states of a protein correspond to different global states
- Changes in global states could be related to function


As discussed earlier, complex systems such as proteins can be treated with statistical thermodynamics: This allows to extract useful parameters.

Motivation – biomolecules exist in multiple states



8-Two state transitions p. 28

Global states in a protein: N and D

Protein denaturation process

Mayor & Fersht, PNAS 2000

can be reversible:

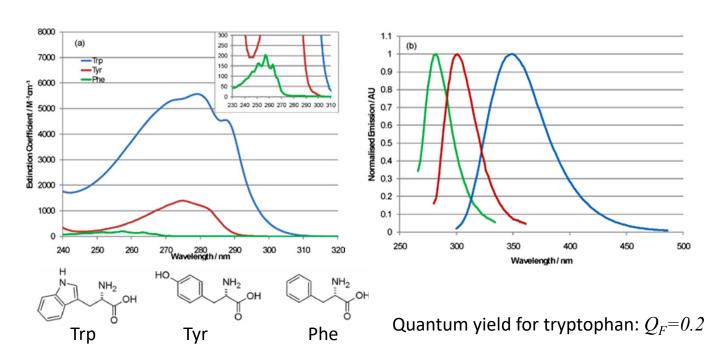
- Loss of defined tertiary structure
- Partial loss / change in secondary structure
- exposure of buried hydrophobic amino acids

or irreversible

- at high protein concentration, aggregation
- can make sick (prions)

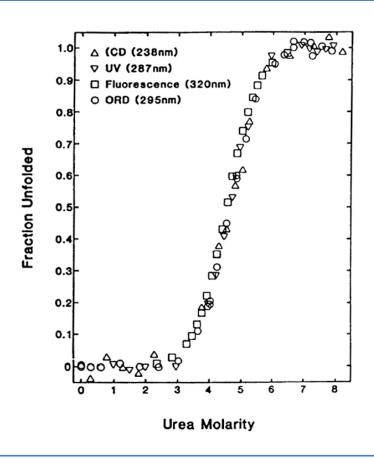
→ unfolding eq.

How can we observe two-state transitions?


Any methods that can distinguish between $oldsymbol{U}$ and N

- Absorbance (e.g. Trp, Tyr) due to change in the micro-environment
- Fluorescence (Trp)-difference in emission spectrum & intensity, due to change in microenvironment
- Circular dichroism (far or near UV), due to change in asymmetric environment of fluorophores
- Calorimetry (DSC), due to change in heat capacity and heat absorption
- NMR spectroscopy
- Gel electrophoresis or size exclusion chromatography
- Catalytic activity, functional assays
- External probes (chromophores, fluorophores)

→ fluorescence

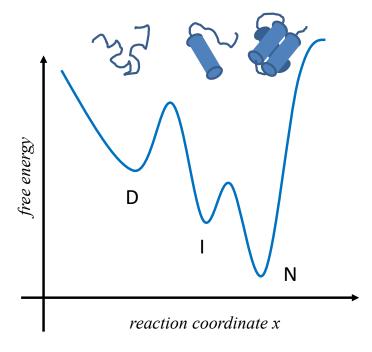

Amino acids: Fluroescence spectra

Absorbance and fluroescence spectra of aromatic amino acids

8-Two state transitions

Denaturation of globular, monomeric protein: RNase T1

$$N \longleftrightarrow D$$

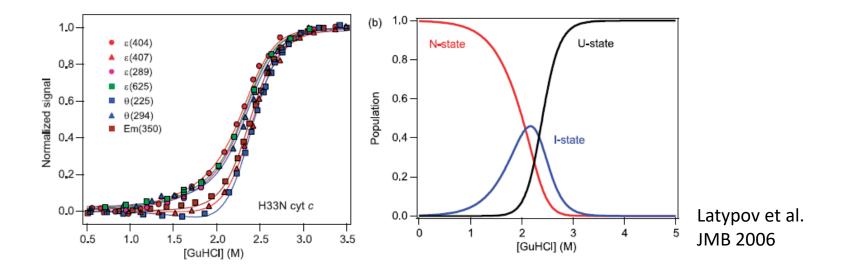

$$y = [N] y_N + [D] y_D$$

$$K_D = \frac{[D]}{[N]} = \frac{y_N - y}{y - y_D}$$

different parameters completely overlap

normalized transitions ($\theta_N = [N] / ([N] + [D])$) overlap

Three (or more) state equilibrium transitions

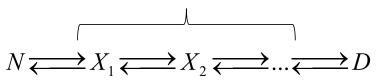


In many proteins, intermediates are populated.

Intermediates include proteins, where only partial structure has formed.

This complicates the analysis.

Multistate transitions in cytochrome c unfolding



If different parameters are observed, unfolding traces do no longer coincide.

Intermediates accumulate during the unfolding transition

Multi-state transition

unfolding intermediates

apparent stability, eludicated by summing the individual contributions

$$K_{app} = K_{D} \frac{1 + \sum d_{i} \frac{K_{i}}{K_{D}}}{1 + \sum (1 - d_{i})K_{i}} = \frac{K_{D} + \sum d_{i}K_{i}}{1 + \sum (1 - d_{i})K_{i}} \qquad d_{i} = \frac{y_{i} - y_{N}}{y_{D} - y_{N}}, \quad 0 < d_{i} < 1$$

$$d_i = \frac{y_i - y_N}{y_D - y_N}, \quad 0 < d_i < 1$$

$$K_i = \frac{[X_i]}{[N]}$$
 $K_D = \frac{[D]}{[N]}$

Denaturation with chemical agents

Molecular mechanism of denaturant action:

1. Direct effect:

H-bonding to polar groups, mostly the protein backbone, thereby competing with internal H-bonds

If charged: Interaction with ionic groups

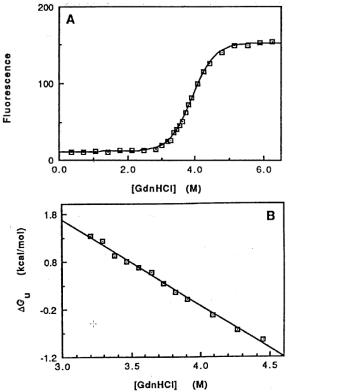
2. Indirect effect:

Alteration of water structure and thus diminishment of the hydrophobic effect Facilitation of the exposure of hydrophobic groups.

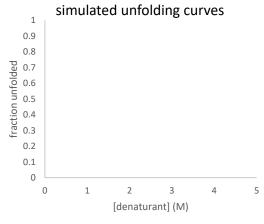
$$H_2$$
 N H_2 H_2 H_2 H_2

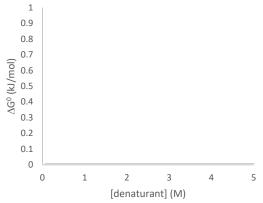
guanidinium chloride

$$H_2N$$
 NH_2
urea


Protein denaturation with denaturants

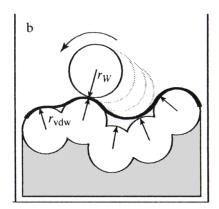
The **effect of denaturants** on the free energy is linear (empirical finding)

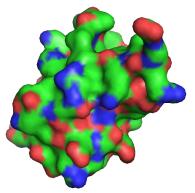

$$\Delta G^0 = \Delta G_{H_2O}^0 + m \text{ [denaturant]}$$


The free energy of unfolding can thus be determined by an extrapolation to **0** M denaturant

Example: Chymotrypsin inhibitor 2 (CI2)

Sensitivity to denaturant


Parameters


- $\Delta G_0 = -40 \text{ kJ/mol}, \quad m = 18 \text{ kJ/mol/M}$
- $\Delta G_0 = -26.5 \text{ kJ/mol}, m = 12 \text{ kJ/mol/M}$
- $--\Delta G_0 = -13.1 \text{ kJ/mol}, m = 6 \text{ kJ/mol/M}$

molecular meaning of m-value:

- proportional of buried ASA
- proteins with large hydrophobic core exhibit high m-value
- the higher the m-value the stronger the dependence of a folding transition to denaturant (steepness)

M-values are proportional to change in ASA

Calculating ASA

- a water-sized sphere is rolled across the chemical structure keeping VdW radii
- the accessible surface corresponds to the ASA

molecular meaning of m-value:

- proportional to change in ASA
- proteins with large hydrophobic core exhibit high m-value
- the higher the m-value the stronger the dependence of a folding transition to denaturant (steepness)

8-Two state transitions p. 40

Small quiz:

- We have a small protein, whose standard free energy of folding (stability) is $\Delta G^o_f = 20 \ kJ/mol$
- Upon addition of guanidinium hydrochloride (GdmHCl), the protein denatures reversibly
- Fluorescence measurements determined a mid-point of the transition at 2 M GdmHCl
- What is the *m-value* for this protein?
- If we compare this to a different protein with $m = 5 \, kJ/mol/M$, what can we say about its structure?